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Abstract. The efficacy of tutoring as an instructional strategy mainly lies on the moment-
by-moment correspondence between the help provided by a tutor and the tutee’s 
learning needs. The model presented in this paper emphasizes the pivotal role of 
monitoring and regulation, both by the tutor and the tutee, in attaining and maintaining 
affective and cognitive states conducive to student’s learning. This perspective highlights 
the hypothesis that the scarcity of the information that the tutor and tutee have access to 
during natural interaction leads to suboptimal learning interactions. As a potential 
response to this lack of information, it is argued that methodologies from cognitive and 
affective neuroscience can provide pertinent information during or after a learning 
interaction, and that this information can significantly empower students and tutors. 
Projected empirical research could lead to a dramatic reinterpretation of 35 years of 
already fruitful tutoring research. 
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Introduction 

It is suggested in this paper that an educational neuroscience perspective on human tutoring 
research may further improve the long-recognized efficacy of this learning context, in which 
an expert tutor interacts with a student as she works on a problem that she cannot solve 
without help. Scaffolding and feedback are the most efficient instructional tactics used by 
the tutor in one-on-one tutoring, irrespective of the learning domain such as science 
education or reading, but they have to be contingent on the student’s needs (VanLehn, 2011; 
Wood & Wood, 1999). In this context, contingency is the moment-by-moment 
correspondence between the help provided and the student’s learning needs. Accordingly, 
scaffolding and feedback are means to incrementally reduce the discrepancy between 
current and desired understanding during the course of a learning situation. Scaffolding is 
defined as the provision of guidance to elicit particular actions on the part of the student 
(VanLehn, 2011; Wood & Wood, 1999). This scaffolding may be dynamic or fixed: fixed 
scaffolding refers to non-interactive help such as printed written materials whereas dynamic 
scaffolding concerns information modulated by the situation (Kim & Hannafin, 2011) such 
as help provided at the request of the tutee or at the initiative of the tutor (Chi et al., 2001). In 
contrast with some conceptualizations of feedback which blur the distinction between 
feedback and scaffolding (see Hattie & Timperley, 2007), scaffolding is different from 
feedback in that it is not a response to previous behavior, but is instead a prompt for a 
desirable behavior. Feedback mainly concerns information about aspects of the student’s 
performance or understanding (VanLehn, 2011). Efficient scaffolding and feedback is related 
to critical dimensions of the current learning goal (Hattie & Timperley, 2007).  

The goal of this article is to examine an important issue in current tutoring research, namely 
interaction granularity and its impact on learning, and to suggest that an educational 
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neuroscience perspective may contribute to characterize and improve tutoring interactions. 
To do so, a conceptualization of a tutoring interaction as joint monitoring and regulation is 
presented, along with a proof of concept of a process-oriented integration of 
electrophysiological data in tutoring research. 

An important issue in current tutoring research: interaction granularity and 
contingency of scaffolding and feedback 

Chi and her colleagues (2001), have shown that the effectiveness of tutoring rests on and 
demonstrates the power of human agency (either by the tutor and the tutee), a notion that 
according to Ferrari (2011), researchers in educational neuroscience must include in their 
prescriptions for teaching. This also acts as a countermeasure to the deterministic aura of 
cognitive neuroscience in the mind of many educators, who may falsely believe that the 
functioning of the brain represents the main constraints for learning (Dekker et al., 2012). 

In a tutoring situation, the tutor has to determine online the state of the learner according to 
a number of dimensions important for learning, such as cognitive and affective states 
(VanLehn, 2011). The tutor has to do so on the basis of the information available regarding 
the tutee: the conversation (in a broad sense, and including gesture, facial expressions, etc.) 
and the problem-solving trace (what the learner has done up to the current point to solve the 
problem). Then the tutor provides feedback concerning the past performance of the student, 
or orients the next steps by means of scaffolding tactics. The tutee also monitors his own 
performance using metacognitive information in addition to the problem-solving trace 
(Efklides, 2011). 

Although research has shown that tutoring is a natural, almost routine human activity 
(Wood, Bruner & Ross, 1976; Graesser et al., 1997), no studies have yet tackled the daunting 
question of establishing benchmarks of optimization of contingency of a tutoring interaction, 
and measuring gaps between optimal and sub-optimal contingency on a moment-to-
moment basis (see VanLehn, 2011). Observing and characterizing those gaps may put an 
emphasis on the challenge involved in monitoring and regulating the student’s learning in 
such complex circumstances, but also may provide cues that can be used to improve both 
the tutor’s and the learner’s decision-making during tutoring. 

VanLehn’s (2011) comparison of human tutoring with various ITS provides a good starting 
point for our case that educational neuroscience may contribute important insights in 
tutoring research by reviewing major hypotheses regarding the greater efficacy of human 
tutoring over other teaching methods. Many explanations for the efficacy of human tutoring 
are ruled out on the basis of empirical studies. (1) human tutors do not hold and use detailed 
diagnostic assessments of the students state (because tutors don’t have that information 
(such as misconceptions, false beliefs, and buggy skills) from the trace or dialogue); (2) 
human tutors do not provide individualized task selection (ITSs do more of this); (3) human 
tutors do not use sophisticated tutorial strategies; (4) learner’s control of dialogues 
(permitted by greater responsiveness on the part of a human tutor) is not supported either; 
(5) human tutors possess broader domain knowledge but this knowledge is not intervening 
significantly during the tutorial interaction; and finally, (6) human tutors do not have a 
better positive impact on student motivation. Two hypotheses are supported by research: 
the effectiveness of human tutors rests on (1) the feedback and (2) the scaffolding they 
provide. There is a lot of confusion in the current literature about the use of the terms 
feedback and scaffolding. A pivotal distinction of which we are reminded by VanLehn 
(2011) is that feedback occurs after a student’s target move, whereas scaffolding is proactive 
and occurs before a student’s target move. In other words, feedback is used to validate or to 
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invalidate and correct a move that has previously occurred, whereas scaffolding is used to 
elicit a desired move immediately after this scaffolding is provided.  

In addition to the feedback and the scaffolding hypotheses, the interaction plateau 
hypothesis provides another complementary and empirically-validated explanation for the 
efficacy of human tutoring (VanLehn, 2011). The principle of the interaction plateau 
hypothesis is that as interaction granularity decreases, the efficacy of tutoring on learning 
outcomes increases only to a given granularity. This granularity corresponds to step-based 
tutoring, in which feedback is given in association with each step in a problem-solving 
solution. Current research is capitalizing on the demonstrated success of step-based tutors: 
Aleven et al. (2009) extended the development of step-based tutors from linear problems to 
more complex problems that can be solved through multiple solution paths. 

The interaction granularity can be explored in terms of timescales, in which more complex, 
slower operations are constituted of sub-processes occurring faster (Newell, 1990). From a 
temporal perspective, step-based tutoring corresponds to tens of seconds, or the unit-task 
level (see Anderson, 2002). Those steps correspond to the steps normally done for solving a 
given problem. By contrast, sub-steps concern operations required to perform the steps that 
normally remain implicit in problem solving. The interaction plateau hypothesis shows that 
this level of detail in tutoring does not provide better learning gains than step-based 
tutoring. This is also true of human tutoring, in which the temporal granularity is potentially 
even finer. Anderson (2002) argued for the importance of sub-steps (from tens of seconds 
(substeps) down to tenths of seconds (Newell’s (1990) deliberate acts)) to diagnose student’s 
mastery and predict retention and transfer. 

It can be helpful to discuss the interaction plateau hypothesis presented before in light of a 
powerful principle of tutoring: contingency (Wood, Bruner & Ross, 1976). Contingency is a 
property of scaffolding (Wood & Wood, 1999; van de Pol, Volman & Beishuizen, 2011). 
Contingency is achieved when the tutor provides help when needed and draws back to 
leave more responsibility to the learner, a process called fading, according to the "shift rule" 
(Wood, Bruner & Ross, 1976). This rule involves providing more support on the next 
intervention if the tutee fails and providing less support in case of success. An experimental 
study in which contingency was manipulated shows that a careful application of the "shift 
rule" leads to better learning outcomes (Pratt & Savoy-Levine, 1998). The results show that 
providing only the appropriate help is better than providing more help than needed. The 
tutor must infer the current goals of the tutee to have a reasonable probability of offering 
contingent support (Gobet & Wood, 1999).  

Original formulations of the notion of contingency imply that only the tutor, human or 
computer, is contributing proactively in the interaction, a process illustrated by Frederiksen, 
Roy & Bédard (1995). The notion has since been broadened to take into account the findings 
regarding the contribution of the student to the interaction, as investigated by Chi et al. 
(2001). Although it is the tutor that provides help, the student has his share of responsibility 
in the interaction, having to seek help strategically (Mercier & Frederiksen, 2007; 2008; 
Aleven et al., 2003). There is also troubling evidence that the accuracy of learners' 
judgements about their need for help reflects prior knowledge (Wood & Wood, 1999). 
However, long help-seeking latencies are correlated with positive learning outcomes, and 
can be explained by the fact that this can reflect self-explanations on the part of the learner 
(Wood & Wood, 1999). Therefore, contingency of tutoring can be seen as an emergent 
property of the interaction between the tutor and the student. Yet, the advent of Interactive 
Learning Environments (ILEs), computer-based learning tools providing on-demand help, 
has led to reconsider contingency in this context as entirely dependent on the student’s 
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decisions. Indeed, the tutor initiative that is required for contingency as originally 
formulated is absent from non-modeling ILEs. 

By postulating the interaction plateau hypothesis, VanLehn’s (2011) analysis discredited the 
interaction granularity hypothesis (according to which learning gains are correlated with 
maximally fine-grained feedback and scaffolding), and this interpretation of current research 
hinges on empirical work showing diminishing returns of finer-grained feedback and 
scaffolding. It must be kept in mind however that neither human tutors nor ITSs are perfect, 
and that the feedback and scaffolding they provide may be flawed sometimes, as VanLehn 
points out. This is especially important when learning is conceptualized as cumulative 
changes in small units of knowledge (Anderson, 2002). Thus, an alternative interpretation 
for the currently discredited interaction granularity hypothesis, given the current state of the 
research can be proposed: the key for accurate feedback and scaffolding at a given grain size 
is adequate information about the learner at that grain size. It can be argued that available 
research has not demonstrated that this information was available and used to improve the 
contingency of tutoring. 

In addition, the studies reviewed may be thought to indicate that theoretical and technical 
developments are required to obtain such information during the course of a tutoring 
interaction. VanLehn asserted that “Human tutoring is finer grained than substep-based 
tutoring because its granularity is unconstrained” (2011, p.204). Alternatively, it can be 
postulated that the granularity of human tutoring, rather than being unconstrained, is 
limited at the finer time scale to the granularity of conversation and speech (seconds). 
Moreover, the granularity of conversation and speech (seconds) is two orders of magnitude 
above the granularity of the lowest-level processes associated with learning (10 
milliseconds), as shown by Anderson (2002). Moreover, the interaction plateau hypothesis 
put in relation with the feedback and scaffolding hypotheses, shows exactly the grain size 
interval (seconds to 10 miliseconds) above which adequate feedback and scaffolding are 
required to further optimize learning from tutoring, and get to the 2 standard deviations 
effect size that remains the goal of the tutoring research community (VanLehn, 2011). The 
question is how to relate events occurring at those different grain sizes, and is discussed in 
an upcoming section. VanLenh’s demonstration shows that the alternative explanation put 
forward here is a testable claim given adequate concepts and methodology. 

The correlation of transitions in conversation with tutee’s global learning gains is very 
informative. However, a consideration of learning gains associated with elements of a 
hierarchical decomposition of the learning domain would be even more sensible (even when 
those are aggregated over some given characteristic), in the sense, as Boyer et al. (2011) point 
out, that all transitions should be related to learning gains, either positively or negatively. 
When tutoring research reaches this point, major prescriptions for tutoring will be 
formulated. 

In sum, the issue identified previously can be related to the principle of contingency. 
Contingency implies that the trace of events regarding the student is the most important 
driving factor in tutoring, both human and ILEs. In this light, the provision of feedback and 
scaffolding in tutoring can be understood as a self-, other-, or co-regulatory activity targeted 
at student’s learning (see Panadero & Järvelä, 2015). Globally, current research on tutoring 
has not completely examined the regulatory aspect of tutoring, and the importance of 
monitoring in this process should be a focal point of future research, as well as the decision-
making process that leads to regulation on the basis of monitoring. Finally, the possibility of 
tutoring research of formulating pedagogical prescriptions rests heavily on a clear 
conceptualization and measure of learning. What is needed within a focus on learning 
trajectories is the fine-grained “signature” of learning in authentic contexts. Behavioral data 
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may not be sufficient, and it is suggested in the next section that psychophysiological data 
from cognitive and affective neuroscience theory and methodology may lead to significant 
advances in this endeavor. 

Re-examining the tutorial interaction as a joint monitoring and regulation process 

Considering recent research, the proposed view appears to be of limited use for the study of 
either how tutors help students or how students learn from tutoring. Relatively more 
detailed models of monitoring and regulation processes were elaborated for a variety of 
contexts, including for example how an intelligent tutoring system helps scaffolding self-
regulated learning (Graesser & McNamara, 2010), or how students seek help from tutors or 
computer tools (Karabenick, 2011; Roll et al., 2011; Mercier & Frederiksen, 2008; 2007). 
Moreover, current event-based conceptualizations of self-regulated learning integrate 
personal traits with task demands (Efklides, 2011). However, the suggested model is critical 
in examining the moment-by-moment, complex and dynamic interplay between the agency 
of the tutor and the one of the student, which has been shown to be the main determinant of 
student’s learning (Chi et al., 2001). It focuses on the notion that tutoring is a joint and 
asymmetrical performance involving a tutor and a tutee with fluctuating levels of success 
which varies greatly from person to person, from session to session, and even from moment 
to moment. It also stresses the importance of a fine-grained trace of pertinent affective and 
cognitive processes for an optimal tutoring interaction, and raises questions regarding the 
necessary information, how to obtain this information, and which tutor and student 
“regulation policies” are most appropriate for student’s learning. 

A joint decision-making model 

Before discussing how psychophysiological measures could significantly contribute to 
tutoring research, it appears relevant to highlight a model that describes aspects of how a 
tutor and a tutee function in a tutoring interaction. The proposed model discusses the 
assumption that decisions made by the learner and tutor are or should be aimed at attaining 
and maintaining desirable states in the learner, and in the properties of the interaction, 
reputedly conducive to learning. Afterwards, critical information for the optimization of a 
tutoring interaction through monitoring and regulation is presented. The ability to reach and 
maintain affective and cognitive states optimally conducive to learning is a critical aspect of 
students’ success. This can be the result of the scaffolding provided through the interaction 
with a teacher or a computer tool (referred to as co- or other-regulation by Volet, Vauras & 
Salonen (2009) and Järvelä & Hadwin (2013)). The necessary skills can also be developed in a 
learner as self-regulation. A program of research based on this model concerns (1) the 
identification of critical aspects of learning processes (both affective and cognitive) that need 
to be monitored and how learners and teachers can develop adequate monitoring skills, and 
(2) the identification of effective regulation strategies, how to develop this repertoire of 
strategies in teachers and learners, and eventually how to design computer tools for 
fostering monitoring and regulation skills. 

The model is presented in Figure 1. In the model, the monitoring and regulation of both 
protagonists is centered on the student’s performance trace (to be discussed in details in the 
next section). On the basis of this trace, monitoring involves judging if the information 
currently attended to is pertinent, that is, if it characterises student’s learning. If so, the 
information is held in working memory and sometimes long-term memory and either kept 
for oneself or communicated through conversation.  
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Figure 1. A joint decision-making model of tutoring 

The tutor’s monitoring includes a specific awareness for important but missing information 
in the student trace, and as such may involve asking the tutee for information. The recorded 
information is then used to assess if the current “tutoring state” is both conducive to optimal 
learning and likely to be maintained. If so, nothing is changed and monitoring continues. If 
the current tutoring state is reputedly not leading to optimal learning or is likely to shift to 
another state, one or both protagonists regulate(s) the situation by choosing and enacting a 
particular move. The effect of the enacted move following a decision is then monitored, in a 
feedback loop, in which an inefficient move is followed by a different move, and an efficient 
move brings the agent back to monitoring. 

The roles of the actors in this situation are distinguished by the particular moves that they 
can enact to regulate the interaction. For example, the tutee can formulate self-feedback, 
select and implement a different problem-solving strategy, or seek help (Karabenick, 2011; 
Roll et al., 2011; Mercier & Frederiksen, 2008; 2007). The tutor can choose to provide 
feedback or scaffolding. Types of feedback include providing information about the task, 
about the processing of the task, about self-regulation, and about the self as a person (Hattie 
& Timperley, 2007). Scaffolding includes explanations, hints, help with routine tasks, as well 
as descriptions of procedures and their rationale. This framework shows the information 
and decisions leading to these moves, and how tutor and tutee moves are sequentially 
related during the course of a learning interaction. What is missing at this point is an 
inclusive set of rules specifying the conditions in which the moves previously described 
must be enacted in order to make sub-optimal tutoring state transition to an optimal one. 
This work is in line with current research in the field of intelligent tutoring systems (see Chi, 
et al. (2011a; 2011b) and Muldner & Burleson (2015) for examples), and extends it by 
considering the role of the tutee in addition to the role of the tutor. The nature of the student 
trace is discussed next. 

The available trace 

All theories of learning in a human tutoring context suggest that tutorial decisions should be 
based on the current needs of the student on the basis of current knowledge level, affective 
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state, and other critical features of the interaction and its context (Collins, Brown & 
Newman, 1988; D’Mello & Graesser 2010; Vygotsky, 1978; Wood & Wood, 1999). Typically, 
these theories are not prescriptive at the grain size of the interpersonal interaction between a 
human tutor and a student, a necessary condition to implement the most appropriate 
pedagogical tactics through online decision-making (Chi et al. 2011a; 2011b). During a 
learning task, the student should be active, self-regulated and engaged. 

In contrast to this ideal view, Graesser & McNamara (2010), in a presentation of available 
human tutoring research, concluded that “both the students and human tutors have limited 
“meta”-knowledge of pedagogy, cognition, communication, emotion, and self-regulated 
learning” (p. 237). Research has shown that human tutors focus on misconceptions and 
errors in problem solving. Tutors have limited assessment of the student’s cognitive state. 
They show low likelihood of detecting a student’s misconceptions or errors when they 
occur, and they do not adequately assess a student’s global domain expertise. Finally, these 
authors report that tutors do not implement strategies that are contingent on learner’s 
affective state.  

On the other hand, students rely mainly on comprehension monitoring in their efforts to 
control their learning (Dunlosky & Rawson, 2012). Interestingly, high-knowledge students 
are more likely to answer no when asked if they understand a specific notion or procedure, 
because of higher standards of comprehension (Graesser & McNamara, 2010). In addition to 
comprehension monitoring, students would better control their learning by being aware of 
critical affective and physiological states, and by making decisions on this basis, such as a 
decision to disengage from a learning effort (Efklides, 2011). Cognitive and affective 
processes during a learning episode are increasingly understood as highly intertwined, and 
should be studied concomitantly using recent models of self-regulated learning, such as 
Efklides’ (2011) MASRL model.  

In summary, tutoring is a highly interactive mode of learning in which the tutor and the 
tutee makes numerous decisions on a moment-by-moment basis about the course of actions 
in a highly dynamic and information-rich situation. The efficacy of tutoring rests on the joint 
agency of the protagonists towards the provision of feedback and scaffolding that is 
maximally aligned with the learning needs of the tutee. In this context, the required 
information concerns both cognitive and affective processes and cannot be obtained 
completely from conversation and the observation of behaviors. Psychophysiological 
measurement, in an approach compatible with the natural tutoring interaction, can help 
lower this deficit in information. 

Monitoring and regulating the behavioral and psychophysiological signature of a 
tutoring interaction 

It was shown previously that a minimal conceptual frame should provide sufficient 
theoretical foundations for an educational neuroscience research program on tutoring. 
Concerning the proposed integration of new approaches in a field of research with a long 
tradition, Hyöna (2010) asserts that methodological innovations contribute in a very 
significant way to the advancement of science. This may be particularly true at this time for 
the use of electroencephalography (EEG) in an educational neuroscience perspective on 
tutoring research. Recent methodological and technological advances in cognitive 
neuroscience, taken together, should make studies along these lines possible, as discussed 
next. In any case, the use of EEG in educational neuroscience has to be complemented with 
pertinent behavioral data, a case previously made in the use of eye-tracking methodology 
(Hyöna, 2010).  
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As envisioned in this essay, the near future of educational neuroscience research on tutoring 
rests mainly on dense-array EEG. “The combination of high resolution EEG, modern inverse 
solution approaches, realistic head shape models, and proper post-processing techniques are 
already leading to the use of EEG as a true neuroimaging procedure” (Michel et al., 2004, 
p.2215). Current developments in the methods of source analysis allows one to consider 
temporal and spatial dimension of brain activity simultaneously and brings EEG at the 
forefront of contemporary neuroimaging methods with a combined high spatial and 
temporal resolution (Dalal et al., 2011). Above all, EEG allows for measurement under 
minimal restraints (Lee & Ng, 2011) and in interactive settings (Koike, Tanabe & Sadato, in 
press), making it possible to reproduce key features of authentic learning environments in 
the laboratory. Recent analysis techniques of dual-EEG, that is, EEG on two people in 
interaction, have revealed properties of brain functioning in the context of interpersonal 
interactions that may complement behavioral indicators (Di Paolo & De Jaegher, 2012). EEG 
caps are worn by the participant as any form of headwear, whereas in a MRI study, the 
participant is positioned in the machine which surrounds her and must be completely 
immobile for the entire duration of the experiment. The higher tolerance for movement of 
EEG enables the participants to sit in front of a computer, manipulate artifacts, use pencils, 
have face-to-face conversation, and even move within a room when using wireless EEG 
equipment. Threats to data integrity in EEG, such as excessive head movements and facial 
muscular activity, affect only the portion of the signal acquired during those events and 
procedures may effectively be used to minimize their impact on the quality of the data in the 
time-frequency approach. The proof of concept of this approach is discussed next in light of 
two relatively advanced lines of research which can serve as illustrations: cognitive load and 
affect. 

Cognitive load is a major determinant of learning in problem-solving situations such as 
those used in tutoring. Three types of cognitive load apply to learning (Antonenko et al., 
2010). Intrinsic load refers to the complexity of the content in terms of concurrently 
interacting chunks of information in a learner’s working memory, and is modulated notably 
by the learner’s prior knowledge of the domain. The two other types, germane and 
extraneous cognitive load, are related to the design of the learning task (Verhoeven, Schnotz 
& Pass, 2009). Germane load is desirable and associated with cognitive operations necessary 
or conducive to learning, whereas extraneous load is unwanted and associated with 
cognitive operations required by the situation that are not conducive to learning, and which 
result from bad pedagogical design or sub-optimal learner regulation. Even if research on 
cognitive load has mainly examined the presentation of information in learning situations 
such as hypermedia and multimedia, cognitive load theory may apply to highly dynamic 
situations in which there is a bidirectional exchange of information between a tutor and a 
learner. Although the impact of cognitive load on learning is best understood on a moment-
to-moment basis (Kalyuga, 2011), the construct is customarily measured at relatively long 
intervals using retrospective self-reports, which have been shown to provide limited and 
imprecise measures (Matthews et al., 2015); van Gog et al., 2012). Instantaneous cognitive 
load, that is, how cognitive load fluctuates every moment during a task, is the cornerstone of 
the measurement of this construct, because many other indices are derived from it for a 
given learning episode; these include peak load (maximum instantaneous load), average 
load (mean instantaneous load), and accumulated load (total amount of load) (Antonenko et 
al., 2010). By definition, the precision of the instantaneous cognitive load index is related to 
the temporal resolution of the measure. Psychophysiological measurements typically 
provide information hundreds of times every second, which is then aggregated and 
eventually indexed with contextual cues. 
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Work in neuroergonomics, the field concerned with using psychophysiological measures to 
address issues of human performance in real-world tasks, has led to validated and robust 
measures of cognitive load based on electroencephalography (EEG) in authentic contexts 
(Antonenko et al., 2010). Moreover, low-resolution and relatively inexpensive EEG systems 
provide reasonable estimates using proprietary algorithms, such as BIOPAC B-alert X10 
system, which provides a probability of high and low cognitive load for each one-second 
interval (Berka et al., 2004; Mercier et al., 2012). Indexes of cognitive load can also be 
computed on the basis of EEG signal obtained using any equipment, as ratios of power 
spectral density in given frequency bands at specific sites, an approach known as spectral 
analysis (Berka et al., 2004). Measurement of instantaneous cognitive load using EEG, or any 
other method, provides estimates of cognitive load in which intrinsic, germane and 
extraneous components cannot be differentiated. Thus, the formulation of cognitive load as 
three components in educational contexts rely on the analysis of the learning situation to 
determine how they contribute to overall cognitive load, and as such, the dynamic 
measurement must be interpreted in terms of the changing context of the learning task and 
the support provided (Sweller, Ayres & Kalyuga, 2011). The use of high-resolution EEG with 
time-varying cortical connectivity estimation techniques (see Astolfi et al., 2010) may help 
characterize cognitive load by showing the patterns of activation between areas associated 
with the processing of different sensory inputs.  

Recent developments in educational research tend to reaffirm that affects are playing a 
crucial role in learning by showing dynamic links between emotions and cognition (Patten, 
2011). In her model, Patten distinguishes between dispositions, basic emotions and feelings. 
Dispositions may be understood as the mood, are largely unconscious, and are basic to 
survival. Basic emotions are instinctive and include happiness, sadness, fear, anger, disgust 
and surprise. Feelings are conscious and involve a cognitive analysis of somatic patterns or 
associations between such somatic patterns and objects or events. Affective states are 
important determinants of learning since they influence the planning and conduct of 
cognitive behavior through executive functions.  

However, research on cognition and research on emotions have traditionally been 
conducted in relative isolation, leading to a lack of understanding of how cognition and 
emotions interact dynamically during learning. Whereas convincing methodology for the 
study of cognition emerged decades ago (Newell & Simon, 1972), measuring emotions in a 
relatively good temporal resolution has remained impractical until recently. 
Psychophysiological methods from affective neuroscience and methodologies from affective 
computing may prove instrumental in bridging this gap between self-report measures and 
variations in affective states since they can measure correlates of emotions as they unfold 
over time, and those correlates can be matched with records of concurrent cognitive 
processes and indexed with contextual features of the learning environment (Immordino-
Yang, 2011; Kukolja et al., 2014). A review of experimental research by Kreibig (2012) 
revealed how ambiguous psychophysiological responses to emotional stimuli can be, in 
sharp discontinuity with the contrasting range of emotions a person can experience, even in 
educational contexts (see Pekrun, 2010). While experimental paradigms focused on short-
term changes may be difficult to reinvest in the study of natural interactions, Stikic et al. 
(2014) showed that continuous EEG can be used to classify emotions as positive and 
negative. Their study suggests that a probabilistic estimation of positive and negative affect 
can be derived reliably for two-minute episodes, which are indexed on the basis of thematic 
shifts within a 19-minute narrative story. Thus, recent research suggests that a multi-channel 
approach to the temporally fine-grained measurement of emotions is necessary, but applied 
outcomes may require substantial basic research. In this regard, Azcarraga & Suarez (2013) 
found that the classification of learners’ academic emotions on the basis of EEG data in the 
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context of a math learning software was substantially increased by including a trace of the 
mouse behavior. 

Whereas subjects’ limited ability to self-report and self-express motivation and the practical 
challenges of measurement of changes in motivation during learning activities are widely 
recognized, psychophysiological approaches may be key in interpreting emotional states, 
especially as they are thought to transition even faster than cognitive states during the 
performance of a learning task, and may often not be amenable to conscious recognition 
(Fulmer & Frijters, 2009). According to this author, these measures are highly context-
specific, but may be subject to confounding factors. Pupil size (Fulmer & Frijters, 2009), heart 
rate variability (Riganello, Garbarino & Sannita, 2012), EEG patterns both from spectral 
analysis (Wyczesany, Kaiser & Coenen, 2010) and Event-Related Potentials (Zhang, Zhou & 
Oei, 2011) approaches, skin conductance (Fulmer & Frijters, 2009) are correlates of affective 
states. The interpretation of psychophysiological data is related to positive and negative 
emotional states related to pleasantness (valence), as well as the sense of mobilization or 
activation (arousal) (Gomez et al., 2009). Valence influences attention, aspects of thinking, 
and memory (Patten, 2011). Indicators of motivation, interest, and engagement can be 
derived from combinations of these indexes.  

The study of motivation and interest from a psychophysiological approach has traditionally 
focused on simple motivations associated with biological needs, but recent research 
concerns more complex human motivations, such as those involved in cognitive task 
performance (Fulmer & Frijters, 2009) and learning (Afzal & Robinson, 2011). New 
conceptualizations related to motivation and interest include flow during learning (Joo, 
Joung & Kim, 2014) and feeling of presence in virtual environments (Clemente et al., 2013), 
and it can be suggested that both concepts can be fruitfully explored in tutoring research. 
Although the development of interest involves a progression through four phases (Hidi & 
Renninger, 2006), data from affective neuroscience cannot discriminate between them or 
signal transitions on a moment-to-moment basis: those stages involve the same 
psychophysiological signature. The possibility of extracting this information from those 
measures over long periods of time is an open question. Interest is related to engagement: 
continued engagement is necessary for interest. Pope, Bogart, and Bartolome (1996) defined 
engagement as a combination of attention and arousal and includes processes involving 
information-gathering, visual scanning and sustained attention (Freeman et al., 2004; 
Poythress et al., 2006; Stevens, Galloway & Berka, 2007). Engagement and cognitive load are 
reliable predictors of short-term success in mathematics problem solving (Galan & Beal, 
2012). Distraction is a notion of the subject’s being involved somewhere other than the 
cognitive tasks of interest. Distraction can involve instances of frustration, boredom or 
confusion (Poythress et al., 2006). Other EEG correlates of engagement include distraction 
and drowsiness (Berka et al., 2004). 

Globally, the strategy for the analysis data of this kind should be oriented towards discrete 
and time-stamped events. Such an approach has been used in cognitive science for decades, 
notably in the analysis of think-aloud protocols (Ericsson & Fox, 2011) and conversation 
analysis (Delium, 2003). An analytical approach based on the sequential dependency of 
discrete states is pivotal in the development of educationally-relevant research in 
educational neuroscience. Establishing causality – the notion that an instructional context 
produces learning gains - has always been a challenge in education, but a focus on learning 
trajectories may contribute significant insights in this respect. By studying antecedent-
consequent relationships between discrete events (that is, their temporal causality), this 
approach capitalizes on the definition of causality in which a cause always precedes its effect 
(Pearl, 2000). In a domain in which processes unfold rapidly in time, temporal causality may 
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surpass experimental causality in its potential for practical implications. Temporal causality 
can capture the effects of fast-occurring events, isolated or in specific combinations, whereas 
experimental causality can only be established for situations that can be manipulated 
experimentally, thereby losing in temporal resolution and/or ecological validity. Rooted in 
information theory, sequential analysis (Gottman & Roy, 1990) will be instrumental in 
discovering sequential dependency and co-occurrence of educationally-relevant 
psychophysiological, cognitive, and social processes. Notions from chaos theory and 
dynamic systems theory (see Arrow, McGrath & Berdahl, 2000) refine the analysis of 
adjacent and lagged antecedent-consequent (unigrams, digrams, trigrams, etc). In fact, 
within this approach, the challenge resides mainly in the transformation of the EEG signal 
into meaningful discrete events. Three approaches currently exist: brain microstates, spectral 
analysis, and event-related potentials.  

Spectral analysis is another pivotal strategy in the proposed research, as it is related to 
activation of brain regions over relatively long periods of time. For example, it has been 
found that the phase pattern of Theta band (4–8 Hz) responses recorded from human 
auditory cortex reliably tracked and discriminated spoken sentences (Goswami, 2011). Our 
own experiments with the B-Alert system have led to encouraging news accompanied by 
many challenges. Nolte & Müller (2010) provide indications regarding how causality can be 
estimated using a three-step data-analysis methodology (PISA, MOCA, and PSI), using 
dense-array EEG (simulation data with 118 channels). The cognitive states inferred from 
power ratios in specific frequency bands can be segmented temporally into discrete states, 
and amenable to the analytical strategies put forward here. In order to do this, the EEG data 
has to be synchronized with behavioral data and indexed with mutually exclusive categories 
emanating from these data. However, the potential for causal explanations in sequence-
oriented analysis is severely impaired by the grain size of the synchronization of the data 
(Mercier et al., 2012). 

Conclusion: Increasing the optimization of learning through greater contingency 
in tutoring 

The elements discussed throughout this text will help frame research questions aiming at 
determining the unique contributions from electrophysiological measures emanating from 
cognitive and affective neuroscience. Indeed, the major argument put forward in this paper 
is that in principle, the consideration of time scales faster than speech and elements outside 
the realm of conscious verbalization represents a major advance for tutoring research and 
that to this end, electrophysiological measures are necessary. By incorporating the 
psychophysiological level, educational neuroscience may be key in resolving the temporal 
and phenomenological indetermination of cognitive behavioral data. In line with Kelly’s 
(2011) contention (see also Devonshire & Dommett, 2010), it can be suggested that 
theoretical claims about the efficacy of tutoring that remain ambiguous at the behavioral 
level will be further tested by hypothesis testing at the level of mechanism, the 
psychophysiological level. Such claims are related to the interaction granularity hypothesis 
(VanLehn, 2011). The learning gains depend largely on the decisions of the agents in a 
tutoring situation, understood as self-, other- or co-regulation depending on the tutoring 
context. The learner, the tutor, or even the ITS can make better decisions if provided with 
additional pertinent information about the tutorial interaction and its outcomes. While the 
argument put forward seems to hold in principle in light of current research, empirical 
results are necessary to show the benefits of the proposed approach. Experiments coupling 
electrophysiological measures with behavioral information must be conducted to 
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demonstrate if and how the EEG for example can provide additional or better information 
than behavioral information alone. If our proposition holds its ground empirically, the next 
question should be related to the use of this information. Can the tutor and/or learner 
benefit from additional information, and then how and when should it be presented?  

The next step in the proposed research involves the further development of a 
conceptualization of learning as a series of events (Kapur, 2011). This can be facilitated by 
the joint consideration of the psychophysiological, cognitive, and social levels, but can 
proceed productively at a given level, following research traditions in the study of 
individual cognition during learning and in the study of a learning interaction. From an 
empirical point of view, challenges abound, but they should not be seen as pitfalls. It seems 
prudent to begin the projected studies with trials without speech and minimal movement, 
but recent improvements in decontamination procedures of the EEG signal may provide 
opportunities to study more natural interactions (Gevins, Chan & Sam-Vargas, 2012). It 
should be noted that EEG data is contaminated even in the most controlled circumstances. 
“Eye blinks, eye movements, muscle activity in the vicinity of the head (e.g. face muscles, 
jaws, tongue, neck), heartbeat, pulse and Mayer waves are examples of physiological artifact 
sources” (Winkler, Haufe & Tangermann, 2011, p. 1), and are the most important source of 
measurement error (Luu et al.,  2009). Any authentic learning situation abounds in all these 
sources of noise and currently represents a stimulating context for the scientist in 
educational neuroscience but a challenge for the cognitive neuroscientist. EEG signatures 
should be studied with geodesic, whole-head nets and powerful decontamination 
algorithms developed. Whatever its source, noise in the signal obtained with quality 
equipment is not random and can be detected by appropriate algorithms. One such fully 
automated algorithm, based on Independent Component Analysis, has been developed by 
Winkler, Haufe & Tangermann (2011). It was developed using dense-array EEG (121 
channels) in an auditory response-time task and in an auditory ERP task, and has been 
shown to be robust enough for continuous signal decontamination, such as Brain-Computer 
Interface applications. Dana analysis techniques are sufficient: they have to be fully 
exploited to their full potential with respect to the goals of educational neuroscience. 
Learning domains such as reading and mathematics have already been substantially 
researched in cognitive neuroscience (Ansari, Coch & De Smedt, 2011; Ansari, De Smedt & 
Grabner, 2012; Byrnes, 2012; Houdé et al., 2011; Kelly, 2011; Lee & Ng, 2011; van Nes, 2011), 
with a strong emphasis on learning disabilities (Byrnes, 2012), and domains associated with 
bilingualism (Pettito, 2009), either the acquisition of a second language (Koizumi, 2011) or 
learning school subjects in multiple languages (Grabner, Saalbach & Eckstein, 2012) are 
emerging so they may represent facilitating contexts for empirical trials. Moreover, tutoring 
in these domains is typical in practice. 

The goal of this essay was to provide a sufficient, albeit certainly partial synthesis of recent 
developments in tutoring research and research in affective and cognitive neuroscience both 
from a theoretical and methodological perspective to highlight the possibilities and 
challenges of educational neuroscience from the point of view of a specific field of 
educational research. Through the discussion about the study of tutoring, it is our 
contention that these elements should be paradigmatic of the field. Moreover, it is argued as 
a final point that the field should tackle a pivotal question: what is the psychophysiological 
signature of learning in authentic contexts? This signature, called empirical primitives are 
becoming known via cognitive neuroscience-based analyses (Kelly, 2011; Koike, Tanabe & 
Sadato, in press). Elements of answer to this question can emanate from a careful, thoughtful 
and patient use of the framework proposed before. A minimal answer will require 
substantial research, but the theoretical and practical leaps are incommensurate, in the sense 
that indicators of learning within time frames, permitting strong temporal causality, would 
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become the variables of choice for researchers in educational neuroscience. It is becoming 
clear that cognitive research, as the basis of behavioral data shows, cannot by itself provide 
this answer. To answer this pivotal question for the field, the observational-correlational-
experimental loop strategy (Kelly, 2011) has to be used, in which the first stages concern 
model building and the last stage represents model testing. 

Many other questions can be examined. During the course of a tutorial interaction, to what 
extent is the tutor able to perceive the emotional and cognitive state of the learner? Do what 
extent is the scaffolding and feedback provided appropriate? Are there differences between 
expert and novice tutors? During a tutor’s explanations to a tutee, do expert and novice 
tutors perceive student cognitive overload, or disengagement as efficiently? To what extent 
are those processes amenable to monitoring and regulation by the student and the tutor? 
Monitoring can also be extended to the tutor. In this context, what is the relationship 
between tutor’s cognitive and affective processes and the appropriateness of the scaffolding 
and feedback provided to the student? 

The psychophysiological information gained from continuous measures during a learning 
interaction can be used in three ways. Firstly, this information can provide a new kind of 
evidence in the study of the effects of particular feedback and scaffolding strategies. 
Secondly, this information can be used in constructing a tutoring efficacy monitoring tool 
after the tutoring session. Thirdly, this information can be used in constructing a monitoring 
tool during a tutoring session. As an online monitoring tool, two variations can be 
envisioned: available to the tutor only, or to the tutor and the tutee. The technology has been 
recently made available, but careful theorizing and testing are required to put it to good use 
during tutorial interactions. 

Psychophysiological information can be used to provide tools to help harness and 
instantiate the typically vast pedagogical knowledge of human tutors by capitalizing on 
their sensitivity to context. It can also be integrated with other types of data contributing to 
the “student model” on which an intelligent tutoring system makes pedagogical decisions. 
This information could be used to create a decision model of “psychophysiologically-
enhanced” tutoring. The availability of extremely simple and affordable EEG equipment, 
including for example a system measuring brain activity at only one site on the scalp which 
can discriminate with 86% accuracy between a neutral and attentive cognitive state, makes 
such use in schools a realistic possibility (Mostow, Chang & Nelson, 2011). Taking the 
context into account could potentially provide an answer to important questions such as: is 
the scaffolding helping the student to learn from the problem or only to solve the problem 
(Hmelo & Day, 1999)? In itself, the notion of scaffolding requires the identification of the 
nature of the guidance and of the knowledge learned. Tutors and students may be surprised 
at how much information regarding learning processes is concealed, make associations 
between psychophysiological information and behavioral manifestations, and become more 
aware of conditions conductive to learning, and consequently strive to attain and maintain 
these conditions. Ultimately, this line of work may represent a potent vector empowering 
the students and tutors, and as such may embody one of the most desirable outcomes of 
educational neuroscience (Ferrari, 2011). 
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